Molecular Docking Senyawa pada Buah Mengkudu (Morinda Citrifolia L.) terhadap Reseptor PDGFR-a sebagai Kandidat Antikanker Paru-Paru
DOI:
https://doi.org/10.33482/jmedfarm.v3i1.62Kata Kunci:
Molecular docking, Mengkudu, PDGFR-αAbstrak
Pendahuluan: Reseptor PDGFR-α termasuk salah satu reseptor protein dalam perkembangan kanker paru-paru dengan mengatur proliferasi, angiogenesis, dan migrasi sel kanker. Penggunaan obat sintetik terhadap sel kanker sering kali menargetkan sel normal sehingga timbul efek samping pada penderita. Karena hal ini perlu dikembangkan senyawa antikanker yang berasal dari bahan alam yang minim efek samping dari pada obat sintetik. Pada penelitian ini digunakan senyawa yang terkandung pada buah mengkudu. Metode: Penelitian ini menggunakan metode molecular docking dengan melihat skor docking terendah antara empat senyawa yang paling banyak terkandung dalam buah mengkudu dan Gemcitabin sebagai kontrol positif terhadap reseptor PDGFR-α. Hasil: Setelah dilakukan molecular docking, senyawa dengan interaksi paling baik diantara yang lain adalah Nordamnacanthal dengan skor docking -6,49, diikuti dengan Morindone, α-Pinene, Gemcitabine, dan L-Scopoletin dengan skor docking secara berurutan yaitu -5,01; -4,83; -4,77; dan -4,66. Kesimpulan. Senyawa Nordamnacanthal memiliki skor docking lebih rendah dari pada Gemcitabin yang merupakan obat sintetik yang telah ada untuk mengobati kanker paru-paru, sehingga Nordamnacanthal bisa menjadi kandidat obat anti kanker paru-paru yag berasal dari senyawa bahan alam.
Referensi
Chanthira Kumar, H., Lim, X. Y., Mohkiar, F. H., Suhaimi, S. N., Mohammad Shafie, N., & Chin Tan, T. Y. (2022). Efficacy and Safety of Morinda citrifolia L. (Noni) as a Potential Anticancer Agent. Integrative Cancer Therapies, 21(1). https://doi.org/10.1177/15347354221132848
De La Cruz-Sánchez, N. G., Gómez-Rivera, A., Alvarez-Fitz, P., Ventura-Zapata, E., Pérez-García, M. D., Avilés-Flores, M., Gutiérrez-Román, A. S., & González-Cortazar, M. (2019). Antibacterial activity of Morinda citrifolia Linneo seeds against Methicillin-Resistant Staphylococcus spp. Microbial Pathogenesis, 128(January), 347–353. https://doi.org/10.1016/j.micpath.2019.01.030
Jia, C. Y., Li, J. Y., Hao, G. F., & Yang, G. F. (2020). A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discovery Today, 25(1), 248–258. https://doi.org/10.1016/j.drudis.2019.10.014
Karim, B. K., Tsamarah, D. F., Zahira, A., Rosandi, N. F., Swarga, K. F., Aulifa, D. L., Elaine, A. A., & Sitinjak, B. D. P. (2023). In-Silico Study of Active Compounds in Guava Leaves (Psidium guajava L.) as Candidates for Breast Anticancer Drugs. Indonesian Journal of Biological Pharmacy, 3(3), 194–209. https://www.
Kurtin, S. E. (2012). Myeloid Toxicity of Cancer Treatment. Journal of the Advanced Practitioner in Oncology, 3(4), 209–224. https://doi.org/10.6004/jadpro.2012.3.4.2
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64(SUPPL.), 4–17. https://doi.org/10.1016/j.addr.2012.09.019
Nancy Sukumar, A., Prince Makarios Paul, S., Gopalan, P., & Angamuthu, A. (2024). Investigation of aluminum nitrate nanotube as the smart carriers for targeted delivery of gemcitabine anti-lung cancer drug. Inorganic Chemistry Communications, 170(P2), 113309. https://doi.org/10.1016/j.inoche.2024.113309
Pandey, P., Khan, F., Upadhyay, T. K., Seungjoon, M., Park, M. N., & Kim, B. (2023). New insights about the PDGF/PDGFR signaling pathway as a promising target to develop cancer therapeutic strategies. Biomedicine and Pharmacotherapy, 161, 114491. https://doi.org/10.1016/j.biopha.2023.114491
Pollastri, M. P. (2010). Overview on the rule of five. Current Protocols in Pharmacology, SUPPL. 49, 1–8. https://doi.org/10.1002/0471141755.ph0912s49
Ramírez, D., & Caballero, J. (2018). Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules, 23(5), 1–17. https://doi.org/10.3390/molecules23051038
Schiller, J., Tilden, D., Aristides, M., Lees, M., Kielhorn, A., Maniadakis, N., & Bhalla, S. (2004). Retrospective cost analysis of gemcitabine in combination with cisplatin in non-small cell lung cancer compared to other combination therapies in Europe. Lung Cancer, 43(1), 101–112. https://doi.org/10.1016/j.lungcan.2003.06.003
Sliwoski, G. R., Meiler, J., & Lowe, E. W. (2014). Computational Methods in Drug Discovery Prediction of protein structure and ensembles from limited experimental data View project Antibody modeling, Antibody design and Antigen-Antibody interactions View project. Computational Methods in Drug Discovery, 66(1), 334–395.
Smith, S. A., & Waters, N. J. (2019). Pharmacokinetic and Pharmacodynamic Considerations for Drugs Binding to Alpha-1-Acid Glycoprotein. Pharmaceutical Research, 36(2), 1–19. https://doi.org/10.1007/s11095-018-2551-x
Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Jurnal Medika Farmaka

Artikel ini berlisensi Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.








